If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+30x-125=0
a = 5; b = 30; c = -125;
Δ = b2-4ac
Δ = 302-4·5·(-125)
Δ = 3400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3400}=\sqrt{100*34}=\sqrt{100}*\sqrt{34}=10\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{34}}{2*5}=\frac{-30-10\sqrt{34}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{34}}{2*5}=\frac{-30+10\sqrt{34}}{10} $
| (2x÷1°)+(x-10°)=90 | | 7t^2-9t+3=0 | | 1.5(-3k+2)=k+ | | 4^4x1=64^x+8 | | 27=4d+d^2 | | x+203x+32=180 | | 2/3=m+5/3 | | x+20=3x+32=180 | | 27-4d=d^2 | | 2x–7+2x=13 | | 7v-3=-45 | | t÷5-4=14 | | 2/3=m+5/8 | | 2(g-3)=-6.4 | | 1.65-0.2+x=1.9 | | 3(2x-5)-4x=-19 | | 8=4g-12 | | x6+x12=12 | | 8x+66=122 | | 3(4-2x)+4x=2 | | x+4=−20 | | 4.5/y-2=8/y-2 | | -2.7x^2+30x+6.5=22 | | 3^(3t-2)=9^t | | 56+16x+9x+19=180 | | 4v-(-45)=5 | | 55+x=78 | | -3v+1=2v+9 | | 6b=11+ | | 56+(16x)+(9x+19)=180 | | 98=49+7x | | 136=64+8x |